
Visualizing Temporal Patterns in Representation Data
Jiangen He*

Drexel University
Chaomei Chen†

Drexel University

Stroke
Melanoma

Polymers

DNA, Complementary

Alcoholism

RNA, Viral

Ovarian Neoplasms

Cyclic AMP

Carcinoma, Hepatocellular

Glycoproteins
Blood Proteins

Triglycerides

Epilepsy

Disease

Colorectal Neoplasms

Hydrocortisone

Lipopolysaccharides

Diabetes Mellitus, Type 1

Antigens

Uterine Cervical Neoplasms

Serotonin

Antiviral Agents

Drug Combinations

Dopamine

Bacterial Infections

Anti-Inflammatory Agents

Magnesium

Lung Diseases

Hemorrhage

Testosterone

Liver Diseases

Hemoglobins

Heart Diseases

Colonic Neoplasms

Fluorescent Dyes

Thrombosis Liver Cirrhosis

Reactive Oxygen Species

Membrane Glycoproteins

Anticoagulants

Interferon-gamma

Plant Proteins

Kidney Neoplasms

Pancreatic Neoplasms

Autoantibodies

Copper

Viral Proteins

Epitopes

Chromosome Aberrations

Phosphates

Phospholipids

Anti-Inflammatory Agents, Non-Steroidal

Antihypertensive Agents

Fractures, Bone

Nitrogen

Arteriosclerosis

Arrhythmias, Cardiac

Bone Neoplasms
Leukemia

Glucocorticoids

Progesterone

Sodium Chloride

Skin Diseases

Estrogens

Parkinson Disease

Necrosis

Solutions

Zinc

Epinephrine

Interleukin-6

Protein-Serine-Threonine Kinases

Staphylococcal Infections

Heparin

Alkaline Phosphatase

Brain Diseases

Hypoglycemic Agents

Actins

Creatinine

Intellectual Disability

Cross Infection

Sepsis

Genetic Markers

Glutathione

Brain Injuries

NF-kappa B

Antifungal Agents

Lymphoma

Immunoglobulin M

Hydrogen Peroxide

Acetylcholine

Coronary Artery Disease

Urinary Bladder Neoplasms

Adrenocorticotropic Hormone

Pharmaceutical Preparations

Pyridines

Indoles

Antipsychotic Agents

Heart Defects, Congenital

Seizures

Dexamethasone

Figure 1: A temporal visualization of 80 widely studied diseases, chemicals, and drugs in the scientific community of biomedicine
from 2006 to 2015.

ABSTRACT

Representation learning techniques, particularly applied deep archi-
tectures, can learn effective representations of data, which is impor-
tant for the performance of machine learning and is also valuable for
us to understand large-scale data. However, few visualization tech-
niques were developed for visualizing patterns, especially temporal
patterns, in high-dimensional representation data. We introduce a
general approach for visualizing temporal patterns in representation
data based on t-SNE. We adapted t-SNE for reducing the dimension-
ality of temporal representation data and proposed a visualization
framework to display the temporal data. We also illustrated a case
study of a set representation data produced by word embedding
technique to demonstrate our proposed visualization.

Index Terms: Temporal visualization; t-SNE; Information visual-
ization

1 INTRODUCTION

Representation learning is important for the performance of ma-
chine learning methods as well as understanding large-scale data.
It has become a rapidly developing field in the machine learning
community [3]. It is widely used in speech recognition [8], vision
recognition [20] and natural language processing [17]. The high
dimensions of representation data obtained from these representa-
tion learning techniques prevent the direct display and instantaneous
recognition of structures and patterns of the data. Various approaches
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have been proposed to visualize high-dimensional data. Some visu-
alization techniques display more than three data dimensions, such
as parallel coordinates [10] and pixel-based visualizations [13]. On
the contrary, visualization techniques [16] based on dimensional-
ity reduction convert the high-dimensional data into two or three
dimensions such that data can be displayed directly.

Despite these techniques of visual representations, it is still chal-
lenging for users to identify critical information for their analysis
task from a large-scale data set because of the diversity of their
information needs. To resolve this issue, many user-driven visualiza-
tion techniques and interaction methods were introduced, such as
user-defined representative projections [14, 15], flexible zoom mech-
anism [2,4] and showing different levels of detail [9]. These features
are desirable for various task-oriented data analysis and exploration.
However, few techniques explicitly visualize the temporal patterns
of representation data.

Temporal data is common in the real world such as scientific
publications, video recordings, server log and any datasets where
entities have timestamps. Temporal patterns in such datasets are
valuable to characterize critical dynamics at both individual-level
and aggregate-level. For examples, a dramatic semantic change of a
term describing a research topic in scientific publication data may in-
dicate radical novelty and rapid increase of new scientific knowledge
in scientific activities related to this research topic; a dramatically
changing pattern shared by multiple research topics may indicate an
underlying change of the intellectual structure of a certain research
community. A temporal visualization at aggregate-level can provide
an overview of an overall pattern for identifying an individual or a
group of interest for further exploration and also gives rich contex-
tual information for investigating individuals and their interactions.
In this paper, we present a temporal visualization method for high-
dimensional representation data based on t-Distribution Stochas-



tic Neighbor Embedding (t-SNE) [16], which aims at providing a
generic approach for visualizing temporal changes of individuals
as well as temporal patterns in a large dataset. Compared to recent
work on temporal high-dimensional data visualization also based
on dimension reduction techniques [11, 19], our proposed method
provides a visualization in a single view for a temporal overview
instead of using different time snapshots.

2 METHODS

In this section, we describe how we align representation data
learned through representation learning techniques at different time
points; Then, we introduced temporal t-SNE for converting high-
dimensional representation data into two-dimensional data across
time points; Lastly, the visualization pipeline and methods are de-
scribed.

2.1 Data Alignment
Supposing we obtained a matrix of representations χt =
{xt1, xt2, ..., xtn} for each time point t = 1, 2, ..., T where χt ∈
Rd×n and xyi is the representation vector of entity i at time point
t. The representation vectors for different time points produced
separately through most of representation learning techniques (e.g.
word2vec [17]) are in different vector spaces. The different vector
spaces preclude the comparison of entities across time points. In
order to compare vectors at different time points, vectors from dif-
ferent time points need to be aligned into a same coordinate axes.
We use orthogonal Procrustes to align the learned high-dimensional
representations [5]. We align across time points while preserving
cosine similarities by optimizing

Rt = arg min
QTQ=I

∥∥Qχt − χt+1
∥∥
F

with R(t) ∈ Rd×d.

2.2 Temporal t-SNE
We employ t-SNE to convert high-dimensional representation vec-
tors into low dimensionality. The conversion goal is to convert a
series of high-dimensional representation dataset {χ1, χ2, ..., χT }
into low-dimensional map point set {Y1,Y2, ...,YT } where Yt =
{yt1, yt2, ..., ytn} (n = 2 in this paper). Although converting all
the entities from different time points together is the most straight-
forward way, it may not be an efficient and effective way. If con-
verting through t-SNE without distinguishing time points t, the
matrix of similarities between high-dimensional data points would
be T ∗ n× T ∗ n. Modeling the pairwise similarities for mapping
data points into two dimensions will lead to high computing costs
if n or T is large. Actually, many similarities are not necessarily
needed to be modeled for visualization, such as the similarity be-
tween xti and xt−∆t

j where i 6= j,∆t > 1. Additionally, modeling
the unnecessary similarities may weaken representing the temporal
changes of individuals.

We propose a temporal t-SNE to convert high-dimensional data
points at different time points t separately in a reverse chronological
order (i.e. T, T − 1, ..., 1). The conversion starts from t = T to
t = 1 and the converted results at t+ 1 is used as input for the one
at t. For t = T , original t-SNE is applied and the map points YT
produced by t-SNE will work as input for the conversion of data
points at T − 1. For t < T , we model the pairwise similarities
between data points in {χt, χt+1}, i.e. we are only interested in
modeling the pairwise similarities between high-dimensional data
points at t and its counterparts at t + 1. Although the map points
Yt+1 are used as input for converting data points at t, Yt+1 are
immutable in the conversion at t, i.e. our method only change Yt
to minimize the cost function. Pseudocode for temporal t-SNE is
presented in Algorithm 1. The technical details of t-SNE we didn’t
describe can be found in [16].

Algorithm 1: Temporal t-SNE.

Data: Data set {χ1, χ2, ..., χT }, cost function parameters:
perplexity Perp, optimization parameters: number of
iterations R , learning rate η, momentum α(r).

Result: Low-dimensional data representation
{Y1(R),Y2(R), ...,YT (R)}

1 YT (R) = Original-tSNE(χT , P erp,R, η, α(r));
2 Yprevious(R) = YT (R);
3 for t=T-1 to 0 do
4 compute pairwise affinities pi|j between xi and xj with

Prep where xi, xj ∈ χt ∪ χt+1;
5 for r = 1 to R do
6 compute low-dimensional affinities qij between yi and

yj where yi, yj ∈ Yt+1(R) ∪ Yt(r);
7 compute gradient δC

δYt ;
8 Yt(r) = Yt(r−1)+η δC

δYt +α(Yt(r−1)−Yt(r−2)

9 end
10 end

2.3 Visualization
In a similar way to Time Curves [1], we employ a curve to represent
the temporal changes of an individual. Each node on the curve is
an observed time point and the curve connected nodes according
to their temporal ordering. Time Curves was designed to visualize
the temporal change of an individual; its visualization is based on
self-similarity, i.e., the distance between two nodes is determined
by how similar between corresponding two time points of the visu-
alized individual. However, the distance between two nodes in our
visualization is determined by both self-similarity and similarities to
other individuals. For example, in the Figure 3, the distance between
the node 5 of A and the node 3 of A represent the temporal change
of A within a certain time-period, but the distance between node
5 of A and node 9 of B represents the difference between them.
Based on this basic design rationale, we proposed several methods
of visual encoding and layout optimization of visual elements to
obtain a visualization showing clear temporal patterns. Visualization
pipeline is described through a real-world example 1 in Figure 2.

Visual Encoding. Since the curves are used to convey temporal
information, it should be intuitive to follow the ordering of time
points. We apply several visual encoding strategies in the visual-
ization. Each segment of a curve is color coded, starting in orange
and ending in dark purple (see the bottom of Figure 3) such that the
more orange part of a specific curve depicts the temporal change
of the corresponding entity at earlier stages of the observed period.
We also encode the nodes representing the time points on a curve by
the same way. In our design, the duration between two time points
remains same for all the curves, so the same color of the nodes on
different curves indicates that information they display was observed
at the same time point. A similar design is proposed in [6].

As we use the map points {yTi } as benchmarks for obtaining map
points at t where t < T , we set the nodes at time point T with a
slightly larger size than others such that the nodes would be visual
benchmarks.

If the representations of a particular entity at more than two ad-
jacent time points are same, we use a light gray ring with different
radius to indicate the number of time points where the representa-
tions are same. Rings with a larger radius means more time points.
For example, the node 3 and node 5 of A in Figure 3 represent more
than one time points.

1A web version of this example can be accessed through this link:
https://www.cs.drexel.edu/ jh3328/vis/02/dy tsne top50.html.

https://www.cs.drexel.edu/~jh3328/vis/02/dy_tsne_top50.html


a) Visual encoding b) Node clustering c) Overlap removal d) Labeling
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Figure 2: Visualization pipeline. Example: a temporal visualization of representations of 50 widely studied chemicals and drugs in biomedical
science community from 2006 to 2016.
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Figure 3: Temporal visualization examples of two entities A and B.

Node clustering. In many scenarios, the temporal changes of
entities might be small. Minor temporal changes of entities may be
less important information, and they may reduce the overall clarity
of an overview showing numerous time curves. To increase the
saliency of important patterns, we cluster nodes by employing a
one-dimensional clustering algorithm proposed in [18] which was
originally introduced for clustering edges in graphs. The algorithm
is more effective than clustering algorithms making use of pairwise
similarities for clustering, such as k-means. The process of the
algorithm is straightforward: given a specific entity i, each represen-
tation vector xti is scanned according to increasing order of t; the
scanning starts from x0

i , which forms the first cluster; if the distance
between the new xti and the previously scanned xt−1

i doesn’t exceed
a predefined value diff and adding the distance to the sum of previ-
ously scanned distances in this cluster doesn’t exceed a predefined
value limit, the new xti is added to the cluster. Otherwise, the new
xti forms a new cluster. The Figure 4 describes the process where
the parameters diff and limit can be tuned to decide how smooth the
curves are, which is helpful for task-oriented analysis. The default
value of limit is the median of the sum of distances of each entities
across t(t = 1, 2, ..., T ); the default value of diff is the default limit
divided T . Based on the results of node clustering, we merge all the
nodes in each cluster into a new supernode. A real-world example
of node clustering is shown in Figure 2(b) where supernodes are
annotated with gray rings.

It is worth noting that we use the original high-dimensional repre-
sentation data rather than the low-dimensional map points to com-
pute the distances because the map points highly depend on what
entities are included in visualization and their distribution. Observ-
ing the differences between Figure 2(a) where no node clustering
is applied and Figure 2(b) where node clustering is applied, we can
see that some of the curves with crowding nodes were not merged,
but some of the curves with spaced node placement were merged.
A pattern of interest may be identified after node clustering. The
curves still with crowding nodes after node clustering may indicate
that the temporal changes of corresponding entities are caused or
can be explained by entities beyond the entities get involved in the
visualization. This feature may provide valuable hints for further

α

β

If α < diff and β < limit,
merge into old cluster.

Otherwise,
create new cluster.

Group into cluster?

Figure 4: Visualization examples of two entities A and B.

exploration.

Overlap removal. Since t-SNE place similar nodes close to
each other, we still can see many overlaps and overly crowd node
placement in the Figure 2(b) after node clustering. We apply col-
lision detection based on force-directed algorithm to remove the
overlaps. The visualization with overlap removal can be seen in
Figure 2(c) where the legibility has been improved.

Labeling The labels of entities are useful for characterizing
the entities, but directly placing labels will cause overlaps due to
varying widths of labels and possible crowding placement of nodes.
We applied simulated annealing to produce a label placement which
places labels around the node representing most recent time point
(t = T ) with minimum overlaps between labels. An example of
label placement produced by simulated annealing is shown in Figure
2(d).

3 CASE STUDY

In this section, we describe a case study where representations of
widely studied disease, chemicals, and drugs in the biomedical
science community were visualized by our proposed visualization
method. The representations are produced by a commonly used
a representation learning technique named word2vec [17] with a
large-scale scientific publication data set MEDLINE/PubMed. MED-
LINE/PubMed data contains over 26 million journal citations and
abstracts for biomedical literature from around the world which is
often cited as the largest database of biomedical publications. We
use the baseline set of MEDLINE/PubMed abstract records released
in December 2016 for training word embedding models. Each publi-
cation in the MEDLINE/PubMed is indexed by a set of descriptors
from the Medical Subject Headings (MeSH). We selected 80 descrip-
tors within categories of ’Diseases[C]’ and ’Chemical and Drugs[D]’
2 that were most frequently used to index publications for this case
study. The visualization of these 80 descriptor representation data
from trained word embedding model is shown in Figure 1 3.

At first glance, we can see the visualized MeSH descriptors were
roughly grouped into two clusters. The cluster in the top half of

2MeSH Tree View, https://meshb.nlm.nih.gov/treeView
3A web version of this example can be accessed through this link:

https://www.cs.drexel.edu/ jh3328/vis/01/dy tsne top80.html.

https://meshb.nlm.nih.gov/treeView
https://www.cs.drexel.edu/~jh3328/vis/01/dy_tsne_top80.html


the figure mainly includes descriptors of diseases and the one in
the bottom half mainly includes descriptors of chemicals and drugs.
Comparing between these two clusters, the pattern that temporal
changes of disease descriptors are more dramatic than chemical
and drug descriptors. Many curves representing chemicals in the
bottom cluster were merged into one node due to few temporal
differences, such as ’Nitrogen’, ’Zinc’ and so on. These patterns
may indicate that scientific research on diseases has more radical
novelty, uncertainty, or controversies than research on chemicals.

Some interesting pairwise relations can be seen in the visualiza-
tion. For example, ’DNA, Complementary’ in the very left of the
visualization was constantly moving toward ’Genetic Makers’ in
recent ten years; ’Colonic Neoplasms’ and ’Colorectal Neoplasms’
in the upper-right-hand corner were always twisted together; ’Cyclic
AMP’ and ’Membrane Glycoprotein’ in the lower-right-hand corner
were gradually moving toward each other along ’zigzag’ paths.

The evolving patterns of individuals are also easy to be identified.
For example, we can see research on intellectual disability changed
dramatically in the first three years (from 2006 to 2009) but has
become relatively ’stable’ in recent years; ’Stroke’ has a dramatic
change in 2012 but the change only lasted for one year.

In this case study, we can quickly identify many interesting pat-
terns. However, identifying more critical information for reasoning
and analysis needs to be supported by visual exploration features of
analytics systems as well as essential domain knowledge.

4 CONCLUSIONS AND FUTURE WORK

In this work-in-progress paper, we present a visualization technique
that can reveal temporal patterns of an individual as well as a set
of representation data. We introduced data processing methods to
aligning representation data in different vector spaces and reducing
the dimensionality of temporal high-dimensional representation data;
We also proposed a series of visualization techniques for obtaining a
visualization with clear patterns; At last, we illustrated a case study
on representation data from embedding models trained by word2vec.

Future work mainly includes improving the scalability of the
visualization, adding visual exploration features, exploring a broad
range of representation data examples, quantitative evaluation, and
user studies.

Scalability. Although various visualization techniques applied
for improving the legibility, clutters are hard to be removed as
the number of entities increase. There two possible approaches
to resolve this issue: glyph design [7] and curve bundling [21].
Using glyphs instead of curves may provide a clear overview; curve
bundling may reduce clutters greatly.

Visual exploration. Many patterns can easily to be identified
in our proposed visualization, but more critical and contextual in-
formation is needed for further reasoning and analysis. Interaction
techniques, such as brushing techniques [12] and projection control-
ling methods [14, 15] may be effective for visual exploration.

Various examples. In this paper, we only explored an exam-
ple of word embedding a representation learning technique from
the field of natural language processing. In the future, we will ex-
plore examples of various representation learning techniques from
different fields.
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