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Figure 1: A visual analytics system for comparing two different snapshots of the AlexNet model after the 10th and 100th epochs.

The network architecture view (a) shows the architecture of the Alex

net. The difference distribution view (b) shows the distribution

of the parameter differences in a selected layer. The convolutional operation view (c) presents a selected convolutional operation

as a 2D matrix to facilitate comparison. The performance comparis
performance and image patches of top activation values.

ABSTRACT

Convolutional neural networks (CNNs) are widely used in many
image recognition tasks due to their extraordinary performance.
However, training a good CNN model can still be a challenging
task. In a training process, a CNN model typically learns a large
number of parameters over time, which usually results in different
performance. Often, it is difficult to explore the relationships be-
tween the learned parameters and the model performance due to a
large number of parameters and different random initializations. In
this paper, we present a visual analytics approach to compare two
different snapshots of a trained CNN model taken after different
numbers of epochs, so as to provide some insight into the design

*e-mail:tsanghaipeng @ gmail.com
fe-mail:hammadhaleemhk @ gmail.com
fe-mail:xpfplantaz @connect.ust.hk
$e-mail:nan.cao @tongji.edu.cn
fe-mail:huamin @cse.ust.hk

on view (d) provides a side-by-side comparison of the model

or the training of a better CNN model. Our system compares snap-
shots by exploring the differences in operation parameters and the
corresponding blob data at different levels. A case study has been
conducted to demonstrate the effectiveness of our system.

Index Terms: H.1.2 [Information Systems]: Models and

Principles—User/Machine Systems;

INTRODUCTION

Convolutional neural networks (CNNs) are widely used in many
image recognition tasks, such as image classification [11, 14], object
detection [16, 22], and video classification [13, 30], due to their
significant advantages over traditional machine learning methods.
Despite such great success on these tasks, CNNs are still treated like
black boxes due to their numerous parameters and unclear working
mechanisms [5]. Thus, designing and training a good CNN model
usually involves a substantial amount of trial and error.

Many studies have been conducted to comprehend the inner work-
ing mechanisms of deep neural networks, and visualization is often
used due to its intuitiveness [1, 15,29]. Most existing visualization
works on CNNs mainly focus on what the neurons have learned,
relationships in the network and the network structure, as well as
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the training information. However, existing CNN visualization tech-
niques usually lack the ability to systematically explore and compare
the differences in parameters/weights of two model snapshots. The
performance of a model usually improves over time during the train-
ing process, but users normally can only obtain the training status
from accuracy and loss information, so it is hard for them to know
what happens to the parameters of the network and how they affect
the performance of the CNN model. Thus, it would be helpful to get
some insight into how model parameters evolve from a state with
low accuracy to a state with high accuracy. For example, if we could
visualize the update trend of parameters better, we could perhaps
accelerate the training process and improve a model’s performance.

In practice, training a CNN model involves learning the parame-
ters for the model from a training dataset. The performance of the
model should be highly related to these learned parameters. How-
ever, there are two main challenges in exploring the relationships
between model parameters and performance: scalability and inter-
pretability. For example, there may be millions of parameters in a
model, which makes it hard to find some important parameters. Also,
it is hard to interpret parameters’ effects on the model’s performance
by directly exploring the parameters themselves. Thus, consider-
ing the large size of a typical neural network, we compare model
snapshots by adopting a top-down analytical visualization method
with different levels of detail, i.e., the model, layer, channel and
neuron levels. For better interpretability, we explore the differences
between two model snapshots from two aspects: the differences in
operation parameters and the differences in the corresponding blob
data given different image inputs. Since different training processes
can sometimes yield significantly different results due to the differ-
ences introduced by random initialization, interpretation of different
training process is not feasible. Thus, in this paper, we only focus
on comparing the differences between two model snapshots in one
training process after two different epochs.

To be specific, we present a visualization system called CNNCom-
parator to compare two snapshots of a CNN model built for image
classification. Our system contains four views. The network archi-
tecture view (Fig. 1a) provides an overview of the network structure
and the differences among the layers. The difference distribution
view (Fig. 1b) shows the distribution of the parameter differences
in one selected layer. The convolutional operation view (Fig. 1c)
simulates the entire convolution operation process, thereby showing
the differences in the parameters and activation in detail. The perfor-
mance comparison view (Fig. 1d) shows a comparison of the model
performance on a given image and a comparison of image patches
on a selected channel. The major contributions of this paper can be
summarized as follows:

* A visual analytics approach is proposed to enable users to
explore and compare CNN operation parameters and blob
activation at different levels.

* Several comparison designs with good scalability are applied
to describe and compare two CNN model snapshots.

2 RELATED WORK

In this section, we summarize some relevant visualization work on
CNNs and some approaches to visual comparison of data.

2.1 Visualization on Convolutional Neural Networks

Many researchers have focused on using visualization to better un-
derstand CNN models, which can be classified into three categories,
namely, feature, relationship, and process visualization.

Most research has been conducted in the field of feature visualiza-
tion, which aims to visualize features learned by neurons in a CNN.
Existing work can be mainly divided into two categories, namely,
code inversion [6,18,30] and activation maximization [7,8,19,24,29].
The code inversion method aims to synthesize an image starting
from the encoded image representation. Mahendran et al. [18] used

a gradient descent optimization to invert representations. Activation
maximization is another method that aims to find an image that max-
imally activates a neuron of interest, thereby revealing the features
that the neuron has detected. However, these methods reveal only
the features learned by neurons and fail to explore the structure of
the network and the learned parameters of the network. Thus, in this
paper we focus on analyzing the parameters of the network.

Apart from revealing what the neurons have learned in a CNN,
researchers have also paid constant attention to relationships in a
CNN model, i.e., relationships between representations and relation-
ships between neurons. Rauber et al. [21] used the t-SNE dimension
reduction technique and provided a detailed analysis of the projec-
tion, which confirms the known and reveals the unknown. Liu et
al. [15] proposed CNNVis, which formulates a CNN as a directed
acyclic graph and proposed hybrid visualization to reveal features
learned by neurons. Their focus was on comparing how the depth
and width of the network affect the training result, while our focus
is on visually comparing the parameters of two CNN snapshots.

Some researchers are interested in the entire process of deep learn-
ing models and have proposed interactive systems [1,10,12, 17,25,
26] to visualize neural network structures and training information;
these systems can facilitate the learning and training of deep learning
models. To the best of our knowledge, TensorBoard [1] is perhaps
the most famous and best visualization tool available to deep learn-
ing researchers. It visualizes neural networks as a computational
graph, where users can check the status of the trained model and
modify configurations. However, it shows the statistical summary
and weight distribution information of the network directly without
any further analysis. Thus, in this paper, we focus on comparative
analytics of the parameters, which is more problem-driven.

2.2 Visual Comparison Approaches

Visually comparing two models with different parameters falls into
the general topic of comparative visualization, especially in the area
of weighted graph comparison and cube comparison.

Three major categories of comparative visualization approaches
are summarized in previous work by Gleicher et al. [9]; these cate-
gories are juxtaposition (i.e., side by side), superposition (i.e., over-
lay), and explicit encoding. Juxtaposition refers to placing objects
separately and performing a side-by-side comparison, while superpo-
sition refers to putting multiple objects in the same coordinate system
and then overlaying them to show the differences. Explicit encoding
involves directly and visually encoding the differences between two
objects. In one way, the entire CNN can be regarded as a graph,
especially a weighted graph. Various comparison techniques that
combine different visualization forms, such as a node-link diagram
and an adjacency matrix, have been proposed [2, 3]. In another way,
a convolutional operation is in the form of a cube. Bach et al. [4]
presented a comprehensive and descriptive framework for temporal
data visualization based on generalized space-time cubes. However,
these methods are not ideal for CNN model comparison and cannot
be easily adapted to compare the parameters of a CNN model due to
the special structure of a CNN and numerous parameters. Borrowing
ideas from existing work, we mainly use juxtaposition and explicit
encoding to compare the data from a CNN model in this paper.

3 TAsSK ANALYSIS
To better compare two different CNN model snapshots, we identified
the following main questions:
Q1 How different are two CNN model snapshots? How can we
quantify differences between two model snapshots?

Q2 Where are these differences? Are there any patterns in these
differences?

Q3 How can we find and highlight any correlation between the
model performance and parameter changes?



On the basis of the questions listed above, we identified the
following analytic tasks:

T1 Global Exploration Users should be able to intuitively ob-
serve the differences from an overview and quickly see major
differences between two snapshots, such as the most different
layer and differences in the model’s performance (Q1).

T2 Detail Exploration Once users select a layer to explore, users
should be able to easily grasp what is different about this layer.
A quick look should enable them to see the distribution and
the parameters that change most (Q1).

T3 Insight Exploration To gain further insight into differences,
users should be able to easily locate differences, such as the
position(s) where most weights change and the position(s)
where most channels are activated (Q1 and Q2).

T4 Correlation Exploration On the basis of correlations between
two model snapshots on a specific layer, users should be able to
identify which features remain most relevant in both snapshots
and observe the different ways a layer becomes activated when
given the same input image (Q2 and Q3).

4 SYSTEM OVERVIEW AND VISUAL DESIGN

We designed our entire system (Fig. 1) based on the principle of
“overview first, zoom and filter, then details on demand” [23]. As
shown in Fig. 2, we compare two model snapshots from two aspects:
directly showing the differences in operation parameters and analyz-
ing the differences in corresponding blob data when given an input
image.

[ Similarity / Difference analysis of each layer ]

[ Difference distribution within each layer J

Operation
parameters
[ Difference location & difference in each kernel ]

Classification
Blob data
Dxﬁ“erenczla in Tmage patches /
channe learned features

Figure 2: How our system compares two model snapshots. It explores
the differences in operation parameters and the corresponding blob
data.

Compare two
model snapshots

4.1 Network Architecture View

This view (Fig. 1a) shows the network architecture of the model,
which provides an overview of what the model looks like. We
simply use Euclidean distance to show the differences in parameters
of each operation layer. Color is used to encode the difference (a
darker shade indicates greater difference), thereby assisting users in
identifying a layer for further exploration (T1). When users hover on
one interesting layer, the corresponding information will be shown
up, i.e., the name, the shape and overall difference in kernels of
this layer. The upper part of Fig. 1a can give a hint on how much
difference the kernels have in the interesting layer. The darker color
means more difference. Ideally, users can click on the layer that has
changed most/least to obtain a comprehensive comparison in the
next three views.

4.2 Difference Distribution View

We use a histogram and a stacked chart in this view (T2). As actual
parameter weights are quite small and near zero, and users usually
focus more on relative change rather than absolute change, this view
is designed to highlight relative changes. First, we create bins based

on the absolute change in weights. Then, for each bin, we quantify
relative change into several change levels, which are indicated by dif-
ferent colors. We adopt relative percent difference [27], because the
normal relative change method is not suitable when the denominator
is close to zero.
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where x, y denotes two variables whose relative change we aim to
measure. d(x, y) denotes the unsigned relative change whose value
lies between 0 and 2. A large value corresponds to considerable
change between two variables.

In the difference distribution view (Fig. 1b), the size of the rect-
angle encodes the number of weights in the corresponding category.
The color encodes the relative change in different levels. A darker
color indicates more changes, whereas a lighter color indicates few
changes. Users can filter different change levels if some of them are
dominant. If users are more interested in one category, they can click
the corresponding rectangle, and the corresponding weights will be
highlighted in the convolutional operation view, thereby allowing
users to know the location of these weights (T3).
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Figure 3: A 2D convolutional operation pixel map. In the input layer (a),
each rectangle (green) represents one channel map; in the convolu-
tional operation layer (b), each column (blue) in the matrix represents
a kernel, and each rectangle in the column represents one channel
kernel map; in the output layer (c), each rectangle (green) represents
one channel map.

4.3 Convolutional Operation View

To facilitate better understanding and fast comparison of convolu-
tional operation, we present a 2D convolutional operation pixel map
(Fig. 1c), which transforms 4D convolutional convolution operation
kernels into a 2D matrix pixel view. Fig. 3 illustrates our design.
Three components exist in this view, namely, input, output, and
operation layers. The operation layer corresponds to the selected
convolutional layer, and the input and output layers correspond to
the previous layer and next layer of the selected convolutional layer,
respectively. Each rectangle in the input and output layers indicates
one channel map of the corresponding layer in the network. Each
column of the operation layer represents one kernel of the convolu-
tional operation, and each rectangle in the column shows different
channels of the kernel. We simply use color to encode the difference
between two model snapshots in this view, which can help users
identify the differences in different channels (T3).



Typically, a tremendous amount of parameters exist, thereby
giving rise to a scalability issue. To solve this problem, we added
some user interactions, such as zoom in/out to explore a part of
interest, hover on to show the position information, and click to pop
up a corresponding kernel matrix. When users click a rectangle in
the input or the output layer, the corresponding image patches are
shown in the performance comparison view (T4).

4.4 Performance Comparison View

In this view (Fig. 1d), we mainly adopt side-by-side comparison on
the performance of two model snapshots (T1). Users can select an
input image. Then, the classification result is shown side-by-side
in bar charts, thereby making the observation of the distribution of
probability for each class easier for users to read. To allow users
to explore more information, we further employ a similar method
used in [8] to compute learned features of neurons. We use selective
search [28] to crop some image patches and then rank them by
activation value on the selected channel (T4). When users hover on
the image patches, the corresponding positions will be highlighted
in the original image.

5 [EVALUATION

CNNComparator is a web-based system to explore how different
network parameters and activation values are between two CNN
model snapshots. In our evaluation, we train the AlexNet [14]
model based on the TFLearn framework on the 17-category flower
dataset [20], where each category has 80 images. After running the
model for 100 epochs, we obtained 97.2% accuracy on the training
set and 72.79% accuracy on the validation set.

5.1 Case Study

We did a case study to show the effectiveness of our system. We
chose two snapshots in the same training process for comparison,
namely, epoch 10 and epoch 100. Usually, for a model designer, the
crucial feedback from the model is related to the accuracy and loss of
a snapshot. By using our system, users can explore the finer aspects
of the model. As shown in Fig. 1d, we can easily see that the model
after epoch 100 outperforms the model after epoch 10 considerably
after an input image is selected. The network architecture view
(Fig. 1a) shows a considerable difference in the conv5 layer. Thus,
we clicked it and then the difference distribution view showed the
distribution of differences between the two snapshots. As we can
see, minor changes in the parameters between two snapshots are
dominant. To determine which part(s) changed significantly, we
filtered out small value changes by clicking the corresponding legend
(the color changes to gray) and then clicking the rectangle we were
interested in; the corresponding locations were highlighted in the
convolutional operation view (Fig. 1c). At first glance, they were
quite randomly distributed; but upon careful observation, we could
see that some neurons were highly activated. As for blob data
that corresponds to the selected input image, some channels were
darker than others, thereby indicating more differences were in these
channels between two snapshots. Once we clicked on a channel,
we could see the top image patches shown in Fig. 1d. Clearly, at
epoch 100, the model is more likely to capture more information
(detailed image patches), whereas at epoch 10, the model is more
focused on some abstract image patches. In the snapshot after epoch
10, the image had a higher probability of being misclassified, mainly
because features are not detailed enough. Fig. 4 demonstrates the
same pattern. However, even in the snapshot after epoch 100, the
model was likely to classify the image to wrong class (class 14).
After careful exploration, we found that this was because yellow is
the dominant color in class 14, and this snapshot mainly captures
the yellow feature.
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Figure 4: A comparison result of snapshots of a trained CNN model
taken after 10 and 100 epochs. Although the model after 100 epochs
outperforms the model after 10 epochs; it mistakenly classifies an
image of a daffodil as a buttercup, since the feature extraction of
snapshot 100 mainly focuses on yellow.

6 DiscussiON AND CONCLUSION

In this paper, we introduced an interactive visualization system called
CNNComparator, which includes four linked views that enable users
to explore the evolution of CNN parameters over one training process
and explore generated learned features. Our system provides a top-
down approach for a comparative analysis of two model snapshots.
The evaluation part demonstrated the usefulness of CNNComparator
in exploring the differences between CNN snapshots. Although this
study focuses on AlexNet as a primary candidate for evaluation, this
approach could be easily extended and applied to other neural net-
work architectures (e.g., VGG, GoogleNet) since they have similar
convolutional operation structures.

However, there are some limitations of this work. First, given the
numerous neuron parameters, scalability is still a major challenge
in visualizing and comparing two model snapshots. Visualizing all
neuron parameters directly will easily cause severe visual clutter.
Also, we observed that the locations of changes are quite random.
So, more interactions should be added to filter out useless informa-
tion by leveraging domain knowledge. Second, we applied some
simple metrics in this paper, such as Euclidean distance. In order to
better measure the differences, some other alternative metrics can be
explored. Third, currently we focused on only two snapshots in one
training process, and we did not compare snapshots from different
training processes with the same or different architectures. It might
be more useful to compare two different models with different ar-
chitectures or hyper-parameters. However, it is very challenging to
directly conduct visual comparison on them due to different model
structures and very different random initializations of the parameters
inside networks. One of the major issues we need to consider is
how to interpret the comparison results affected by different ran-
dom initializations. Therefore, in our paper, we start to address an
easier problem by comparing two model snapshots in one training
process. Also, it might be more natural to show temporal trends of
how models change over epochs, rather than picking two numbers.
In the future, we will try to explore more complicated cases and
extend this approach to different training processes and different
model structures, as well as show temporal trends of how models
change over epochs.
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