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ABSTRACT

Deep models are at the heart of computer vision research recently.
With a significant performance boost over conventional approaches,
it is relatively easy to treat them like black boxes and enjoy the
benefits they offer. However, if we are to improve and develop them
further, understanding their reasoning process is key. Motivated by
making the understanding process effortless both for the scientists
who develop these models and the professionals using them, in this
paper, we present an interactive plug&play web based deep learn-
ing visualization system. Our system allows users to upload their
trained models and visualize the maximum activations of specific
units or create attention/saliency maps over their input. It operates
on top of most popular deep learning frameworks and is platform
independent due to its web based implementation. We demonstrate
the practical aspects of our two main features MaxOut and Reason
through visualizations on models trained with artistic paintings from
the OmniArt dataset and elaborate on the results.

Index Terms: H.2.8 [[Data Visualization] Convolutional Neural
Networks;]: Visual Analytics—Deep Learning;

1 INTRODUCTION

Deep neural networks have been the base mechanism for solving
computer vision problems in recent years [8, 12, 13, 16, 17]. These
models are constructed of multiple layers, containing hundreds, even
thousands of processing units with the ability to learn millions of
parameters. This layered structure and the ability to work in large
high dimensional spaces is what gives deep models superior per-
formance in solving complex computer vision problems. However,
their greatest strength is also one of their greatest weaknesses - the
reasoning process of a deep model is not easily interpretable. Vari-
ous parameters, feature maps and weight matrices give hints about
the decision making process, but often the reasons behind a decision
made by the model remain a mystery. A clear understanding of the
learned features and representations is important for both the people
who develop these models and the professionals who use them.

On one hand, by using interactive visualizations, scientists can
better observe the strengths and weaknesses of their model, on the
other, end users can acquire new insights from the purely objec-
tive viewpoint of a deep model. To achieve this we address two
fundamental questions posed in deep learning:

1. How does the model perceive a certain target? What would the
perfect image for the target look like?

2. Given an input image, which regions are responsible for the
decision the model has made when assigning the target cate-
gory?

Answering these questions can reveal a lot about how the model
in question functions and how decisions are made. For this reason,
we attempt to answer those questions through a web based tool that
contains two main features, namely:
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1. MaxOut: Given a trained model, we maximize the activations
for a particular class (in classification problems) or a particular
value (in regression problems). Activations can be computed
for every unit throughout all the layers in the model given a
desired or predicted target.

2. Reason: Given a trained model we apply class activation map-
ping techniques to map target specific regions in the input
image. This procedure is essentially answering the question,
why the model classified the input image in a specific cate-
gory and which part of the image is most responsible for this
decision.

Both scenarios can be used at the same time, on the same model,
running on both CPU and GPU, supporting multiple deep learning
frameworks and back-ends.

Applying deep model visualization techniques is often a complex
process and requires both knowledge in the machine learning and
software engineering domain. Motivated by making deep model
visualizations accessible to everyone who uses a deep model in their
domain, we created this generic tool for visualizing the internals of a
deep net. This symbiosis between visual analytics, computer vision
and user interaction is particularly interesting in the art domain as
it allows art historians, curators, professionals and even students to
analyze artistic data from a completely new perspective. We use the
art domain to demonstrate our two features and show an interesting
use case for our tool.

In the list below, we indicate the main contributions of this paper:

• We developed a plug&play, interactive visualization system
for deep models running in a web browser with no dependency
on the training platform.

• We incorporated state-of-the-art visualization techniques for
deep models available in a user friendly environment, where
no coding is necessary to produce the desired result.

• We developed an extension to the Grad-CAM method that al-
lows for attention maps to be computed with respect to multiple
layers at the same time.

2 RELATED WORK

An ideal system does not exist. There is always a trade-off between
different features in the same system and in order to excel in one,
compromises must be made. The current state of machine learning
research portraits the same picture. Classical rule based system are
highly interpretable, however they lack robustness and accuracy [14].
On the other side, deep models obtain remarkable performance due
to the increased number of learnable parameters and closed loop end-
to-end training processes, however their decision making process is
very hard to interpret. The high dimensional space in which deep
models operate can be perceived as an information overload and the
goal of visual analytics research is to turn this information overload
into an opportunity for gaining new insight [10].

Visualizations in this domain are generally driven by either the
visual information incorporated in the structure of the underlying
model, or by the correlation between the model’s output and the
input data, or some of the learned internal representations. Neverthe-
less, the common goal in all of them is to make deep models more
interpretable and their reasoning process understandable.



Figure 1: User interaction flow in our tool in both the Reason and MaxOut use-case scenarios.

2.1 Understanding Deep Models

Many research efforts have analyzed the internal representation of
data and units in deep networks [6, 15, 19, 24–26].

Liu et al. [15] proposed a novel visualization model, where they
represent a convolutional neural network as a directed acyclic graph
in which they visualize the interaction between multiple facets of
each neuron and their interactions. Further, using a rectangle pack-
ing algorithm and matrix reordering they are also able to show the
different derived features in the intermediate layers during training.
While the approach of Liu et al. projects the visualization in an
external space, Zhou et al. [25] introduce an approach called Class
Activation Mapping (CAM) that projects its insight over the input
space. By altering the architecture of deep convolutional models
with adding a global average pooling layer, they are able to pre-
serve the spatial information that is lost in its fully connected top
layers. Adding the global average pooling layer further increases
the localization abilities of the model and outputs spatial coverage
maps over the input image for a selected label. However, this ap-
proach does imply changing the model’s structure and adding an
additional layer which will require re-training. Selvaraju et al. [19]
overcame the problem of changing the model’s structure with Grad-
CAM, an approach to Class Activation Mapping using the computed
gradients as the back-propagated signal. By setting the gradients
for all categories (excluding the desired/predicted one) to zero and
back-propagating that information to the desired layer, a coarse lo-
calization map is computed. Using guided pack-propagation [21] the
coarse localization map is then point-wise multiplied with the guided
back-propagation output to obtain a concept specific visualization.

In our approach, we incorporate the Grad-CAM methodology as
it does not require architectural changes to the model in order to
produce the visualizations and further extend it to be applicable to a
set of layers, instead of just one. This is particularly useful for the
low level features learned in the early layers of a convolutional neural
network, which have a rather uniform activation map throughout the
input image.

All of the approaches above focus on visualizing insights from
an already trained model. In contrast, Smilkov et al. [20] show a
high level abstraction visualization over the learning process in an
interactive visualization of a user customizable deep neural network.
The process of training models in the Smilkov et al. system is limited
in terms of data and complexity due to the web browser’s resource
stack, but nevertheless it provides real-time information about the
learning process. In the paradigm of visualizing the training pro-
cess of a deep model, control through visualization is also possible.
As Chung et al. [4] demonstrate in ReVACNN through visualizing
the two dimensional embedding space of convolutional filters and

weights with user controlled steering of the model. They achieve
control by adding or removing nodes and setting custom weights.
Another example of understanding deep models through visualiza-
tion is a tool box that has been developed by Yosinski et al. [23]
running on the Caffe back-end. This toolbox displays a neuron by
neuron visualization of each layer in the convolutional network in a
video feed real time.

In this paper we incorporate most of the above approaches into
one interactive plug&play web based system that runs on all plat-
forms with support for multiple deep learning frameworks in both
CPU and GPU operation modes. This system can be used as a web
service or local instance running on any machine.

3 SYSTEM ARCHITECTURE

We introduce a generic web based visualization tool for visualizing
the reasoning process in a deep model. The system’s implementation
logic spans on both the user (front-end) side and server (back-end)
side. In the front-end the system parses the uploaded model and
configures the back-end with respect to the model’s operating param-
eters like source framework, CPU/GPU configuration, layer settings
and also available system resources. On the server side, a model
specific sub-server instance is created that feeds data through a web
hook to an Model-View-View-Model (MVVM) controller on the
front-end which then displays the data.

With deep models there is always the possibility to store them
as a dictionary of layers and weights. This structure is something
that all the deep learning frameworks have in common, so moving
from one framework to another is just a matter of different structure
parsing. For our implementation we convert each uploaded model
to Keras with Tensorflow on the fly and store the new structure in
the local file-system. In this way we preserve the code-base integrity
and we are able to use the same visualization functions regardless of
the deep learning framework used to train the model.

The general user interaction flow is illustrated in Figure 1 for both
the MaxOut and Reason feature.

Figure 2: A high level model overview for the artistic data use-case.



Table 1: Dashboard parameter functionality description for MaxOut and Reason

Parameter Type Description

Filter # Integer [0 - # Units in layer] Select the filter unit/s to visualize. If not set all units are selected. (MaxOut & Reason)
Class # Integer [0 - # Targets] Select a specific class to maximize (MaxOut) or calculate attention maps (Reason)
TV Weight Float [0 - 100] Weight parameter for the Total Variation loss (MaxOut)
Norm Float [0 - 100] Weight parameter for the regularization loss (MaxOut & Reason)
Iterations Integer [Unbound] Number of iterations for maximum activation input image generation (MaxOut)
Smoothing Boolean Apply smoothing to generated maximum activation images (MaxOut) / Smooth out heat-maps over the high resolution view (Reason)

Figure 3: Reason: Grad-CAM over a collection of layers and Guided
Grad-CAM in the last fully connected layer showing different relevant
regions for the Van Gogh class in a model trained for artist attribution.
An interesting observation is that higher level layers focus on complete
objects like the mustache, nose and mouth regions while lower level
layers find the contours of the object and some background artifacts
more interesting.

Table 2: Task specific data information

Task Type # Classes # Samples

Artist Attribution Classification 38
43000Style Prediction Classification 9

Type Prediction Multi-label Classification 12

3.1 Back-End

With the expansion of the deep learning paradigm, many deep learn-
ing frameworks have been developed like Caffe [9], Tensorflow [1],
CNTK [18], Theano [2]. In our system we currently support models
built on top of Tensorflow and Theano, even if they were made with
a high level abstraction library like Keras [3] or Lasagne [5].

In terms of the web server, we use the Django web framework
with a MongoDb engine for storing results and visualizations. Our
back-end implementation additionally features a Redis smart server
caching engine for speeding up high dimensional model visualiza-
tions when repetitive requests are made. Because some of the visual-
izations that can be generated in our tool require training iterations,
we support GPU operation modes on a local instance.

3.2 Front-End

On the client side we incorporate an MVVM software architecture
with AngularJS and jQuerry for handling data operations and mod-
erating the server feed, while for displaying specific visualizations
we use D3 and HTML5 Canvas. The major role of the front-end
is to prepare the configuration for creating the back-end instance
responsible for the current session.

4 METHODS

Our tool incorporates two main features, namely MaxOut and Rea-
son. MaxOut is a tool for displaying the maximum activation input
for a specific target in any layer of the uploaded model. Reason on
the other hand, is a tool for creating class specific attention maps,
also in any layer of the uploaded model. Attention maps can be
created for a single layer or multiple layers at the same time.

Both features share a common dashboard where users can control
the parameters for creating the visualizations. The functionality and
possible values per parameter are explained in Table 1.

Figure 4: Maximum activations in a penultimate dense layer of a
convolutional neural network for a portrait type in the grid view. Clearly
visible portrait outlines are present in almost all of the visualized units.
Some of the outputs even have distinguishable facial features.

4.1 MaxOut: Visualizing Maximum Activations

In a CNN, each convolutional layer has several learned template
matching filters that maximize their output when a similar template
pattern is found in the input image. Usually the first convolutional
layer is easy to interpret as it contains primitive features like edges,
lines and color transitions. To see what the convolutional layer is
doing, a simple option is to apply the filter over raw input pixels
and multiply to get a result. Subsequent convolutional filters operate
over the outputs of previous convolutional filters (which indicate the
presence or absence of some templates), making them much harder
to interpret.

Having in mind that a simple weight visualization does not pro-
vide enough information for understanding the structure of the inter-
mediate layers, activation maximization is an intuitive approach to
visualize how they react. The idea behind activation maximization is
to generate an input image that yields the maximum activation scores
from the units in a particular layer. This is performed using a custom
loss function for a user defined number of iterations which outputs
small values for significant filter activations. Using this feature helps
interpret how the model in question perceives the classes on which it
is trained on, in different levels. When this feature is used in the last
layers in the model’s structure, observations show that a mapping
between target categories and specific units can be deduced. Figure
5 illustrates the flow of actions performed in the MaxOut feature
from start to end.



Figure 5: An illustration of the MaxOut process. The desired target
and layer whose units are to be maximized are selected in the begin-
ning. With respect to this selection, the generated input images (left
dotted square) progress iteratively as the loss for the category per
unit decreases.

4.2 Reason: Visualizing Attention Regions
Reason is a feature where we visualize which regions of the input
image are relevant to a particular class, according to layers belonging
to different levels in the model. We perform this using GradCAM
with and without guided back-propagation. Given an input image,
we use the uploaded model to predict the target and visualize the
regions that most contributed to the result in every parametrized
layer. We further enhance user interaction by providing the user
with an option to select groups of layers to visualize, since early
convolutional layers contain low level image features that have a
more uniform activation distribution than layers appearing later in
the architecture.

Figure 3 shows the difference between a regular GradCAM out-
put and a GradCAM output with Guided Back-propagation. The
regular GradCAM visualization generates heat-maps over the input
image and localizes well, however these heat-maps lack the ability
to show fine-grained importance which is possible with pixel-space
gradient visualization methods (Guided Back-propagation and De-
convolution). For this reason we only apply the regular GradCAM to
visualizations in layers lower in the architecture, while for ultimate
and penultimate layers we apply GradCAM with Guided Back-
propagation. Figure 6 illustrates the flow of data and representations
generated by the Reason feature.

The generated regions in each image do not have to relate to the
target category only. This feature is particularly useful in situations
when the model does not yield high confidence scores for the final
output. For example, in the artistic domain it can be useful to
determine confusing regions in artist and style attribution, as well as
analyzing feature dependencies between styles.

5 USE CASES

Visualizing the internal representations and decision making process
of a deep model can generate new insight and answer some domain
specific questions. We are particularly interested in the artistic do-
main, so we applied our tool to models trained with a dataset of
artistic paintings from the early 1500s to late 1900s with the artists,
painting type and style as targets. Given the multiple types of tasks
(style, artist, type) we performed multi-task learning with a shared
fully connected layer before the final classification block for each
task. With intent of creating domain specific visualizations of the in-
ternal states and attention maps, we avoided pre-trained models even
if they have superior performance to models trained from scratch.
We trained our models from scratch on artistic data consisting of

Figure 6: Attention representation flow in the Reason feature. The
attention maps from the early layers in the convolutional architecture
are combined to form a single aggregated attention map that conveys
a clearer image of important regions. In the final representation layer
before the classification block, a much stronger heat-map is generated
due to the higher level target specific features.

43,000 paintings from OmniArt [22] for artist attribution, style and
type prediction. Task specific dataset details are given in Table 2.

For the model illustrated in Figure 2, the training process lasted
for 40 epochs with a batch size of 64. For optimization we used the
Adam optimizer [11] with an initial learning rate of 0.001. Training
on a single TitanX GPU, the total training lasted 5 hours. The final
task specific performance of the model is presented in Table 3

5.1 MaxOut in Artistic Data

A model can learn to distinguish between different artists, artwork
types, styles and periods. It can even learn the particular characteris-
tics of a certain style, store them in a gram matrix and then apply in
a different input space [7]. This means that the models that we train
build their own representation of what it means for an artwork to be
a portrait, or a painting to belong to the Realism style. While this is
a well known mechanism for people with a background in computer
vision or machine learning, professionals in the artistic domain do
not have the skill-set required to use these methods and study the
occurring phenomenons.

Using the MaxOut feature, seeing the ideal depiction of a certain
target is possible with just a few clicks. As a simple, yet illustrative
example we applied the MaxOut feature to a model trained to distin-
guish painting types (portraits, landscapes, still nature, etc.). When
choosing the desired target painting type to be a portrait, the MaxOut
feature outputs images that have a rather familiar composition. This
is illustrated in Figure 4 for portraits and Figure 7 for landscapes.
For the units correlated with the portrait target, all of the generated
inputs have a central structure resembling a human head with facial
features, hair and even hats. Another rather interesting find is that
most of the portraits in out dataset are painted on a circular shaped
canvas, which is also captured in the internal representation of the
model for a portrait. Going into further detail using the pan&zoom
feature, interesting color patterns can be observed for illustrating
skin tones.



Table 3: Task specific model performance

Task Type Score Metric

Artist Attribution Classification 0.74 AccuracyStyle Prediction Classification 0.88
Type Prediction Multi-label Classification 0.91 image MAP

Figure 7: Maximum activation in the penultimate dense layer corre-
lated with the Landscape target. Blue pigments on the bottom indicate
presence of water and blue top regions correlate to skies, making units
15 and 25 prone to activate on coastal landscapes. Green, yellow and
orange colors in units 43 and 62 indicate verdant landscapes.

5.2 Reason in Artistic Data
When viewing a particular painting, one can determine its origins,
style, period and even artist from clues hidden in the composition
and structure of the artwork. People’s perspective on this is often
well defined, for example heavy dramatic brush strokes might indi-
cate a Van Gogh, or careful light capturing and low lit dark tones
might indicate a Monet. Due to the nature of human perception,
representation of art is always open to interpretation. We can also
pose this question in the world of neural networks. What the neural
network thinks about when classifying a Van Gogh painting is a
particularly interesting process to visualize. Also, where does the
network pay the most attention when deciding whether that particular
artist should be attributed?

We can answer these questions by analyzing target specific re-
gions in artworks. This sort of analysis requires a high resolution
visualization, however the receptive field of convolutional neural
network is relatively small for this purpose (max. 256px over 3 chan-
nels). For this reason after applying the guided back-propagation on
the scaled input image, we further interpolate the same regions over
the input image in its original dimensions providing us with real
size attention maps. Additionally, while displaying a full screen grid
preview of the maps from each layer there is a synchronized pan and
view functionality over all maps, allowing parallel exploration of the
visualization results. This detailed view can be accessed from the
Reason and MaxOut dashboards after creating the attention maps
or maximum activations. From Figure 3, we can conclude that the
network finds Van Gogh specific artifacts in the facial features like
mouth, moustache and nose area in the final layers, while the earlier
layers in its structure indicate some contour and background features
as target relevant. This also confirms that the higher level layers,
learn more semantically relevant features than lower level layers.

Additionally, Figure 6 shows a similar insight, where the earlier
layers in the architecture activate more uniformly on the input, so
the activations are less likely to be class specific. In the final part of
Figure 6 we can again see that what makes the input image a Van
Gogh self portrait are the actual facial features captured in the final
representation before the classification block.

Figure 8 offers another interesting insight into our model. In
the first row we show a maximum activation of a unit correlated
with some landscape images from our dataset. The dark lower
portion matches well with Rembrandt’s dark tones and gray skies
in stormy landscapes. When one of these landscape images in run
through the Reason feature, we can clearly see that according to
our model, the sky portion of the image is the one responsible for
attributing both Rembrandt as the artist and landscape as the type.
This is visible for the two input images in the second and third
row in Figure 8, where the red box represents Reason in artwork

Figure 8: MaxOut and Reason in Rembrandt’s landscapes. In the
first row we show a maximum activation of a unit from the final dense
representation that has a minimum distance to Rembrandt’s land-
scapes. Second and third row show why these particular paintings
are attributed the Landscape type (in red) and Rembrandt artist (in
yellow).

type prediction and the yellow box represents Reason in the artist
attribution process. Inspecting the dataset after the fact, reveals that
most images correlated with both the Rembrandt and Landscape
target have the same type of sky in the mid-top left portion of
the painting. This would imply that the model learned a suitable
representation for this subset of images and truly captured target
specific knowledge.

6 CONCLUSION

In this paper we introduced a cross-platform, plug&play deep visual-
ization tool which we applied on models trained on artistic paintings.
This system is plug&play, meaning that no configuration is neces-
sary for running it and being platform independent can be used to
visualize models trained with a variety of frameworks with different
settings. We put our main emphasis on ease of use and simplicity be-
cause the tool is intended to be a fast visualization solution requiring
a minimum amount of effort to configure.

MaxOut and Reason, the two main features focus on different
perspectives on visualizing the model’s reasoning. MaxOut creates
maximum activation input images for a specified target enabling
users to see the internal representation of that target in any layer
in the network. This feature could answer interesting questions in
the artistic domain as it emphasizes the layer relevant features in
the generated maximum activation images. Depending on the level
of the selected layer, analysis can be performed on either low level
basic features containing brush strokes, contours and simple color
gradients, or high level features containing target specific objects
like facial features.

Reason generates attention maps over an input image with respect
to a certain layer, or even a layer collection, for a specified or pre-
dicted target. The specified targets and layers can be aggregated for
generating a combined attention view and comparing attention re-
gions on the input image according to multiple layers. Both features
have a grid based, high resolution view of the generated output with
synchronized pan and zoom features.

This tool can be used as a web service available on-line, or as
a local instance on a private computer. Making it available as web
service, requires a powerful server for serving multiple clients at
once, so currently we can only release the source code and use it in
a local environment. We will further develop and improve this tool
by supporting more types of visualizations, improving the support
for Caffe and CNTK back-ends and the general user experience.
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